
Page 266

Advanced Querying Tools
Chapter 12

Most of the querying tools we've discussed so far in this book are what you should expect to see and use
most frequently. You'll probably get by just fine with the things you've learned up to this point, but if you
want to become a querying master and impress your coworkers (and most importantly your boss), you'll
want to learn and understand the more uncommon querying tools that are available to us.

Who knows, some of the tools you'll learn in this chapter may be exactly what you need to know to
accomplish a given task.

The APPLY Operator
The APPLY operator works very similarly to a correlated subquery, which we discussed in chapter 10. It
involves using a left input and a right input, where the right input can reference elements from the left input.

The best way to understand the APPLY operator is to look at some examples. There are two versions of the
APPLY operator: CROSS and OUTER.

CROSS APPLY
Take a look at the Products and Orders tables:

Let's say we wanted to create a result set where for each product, we displayed all the orders that have
been made for that product. We'll return all columns from the Products table and just the OrderID and
Orderdate columns of the corresponding rows in the Orders table.

Let's walk down each row from the left input (the Products table) like SQL Server will do. The first product is
the Large Bench, Product ID # 20. Which rows in the right table reference that product? Looks like it's just
this one:

Page 267

Chapter 12- Advanced Querying Tools

So in our final result set (so far), we'll see a row like this:

(I'm purposefully not showing you the query yet. We'll get to it soon)

That takes care of that product. Then we move onto the next product, which is the Small Bench. The rows
that correlate to it are the following:

Cool, so we'll see those rows in the final result set, too:

Page 268

Chapter 12- Advanced Querying Tools

Folks, this process keeps happening for all rows in the Products table, which is the left input. For each
product, we figure out what rows correlate to it in the right input. The final result set ends up looking like
this:

To write the query that created this result set, we start with the left input. In this case, it's just a query
against the Products table:

SELECT P.*
FROM Products as P

Then we outline our CROSS APPLY operator:

SELECT P.*
FROM Products as P

CROSS APPLY
(
 <inner query>
) AS <cross apply alias name>

In our case, we want the <inner query> to be a query against the Orders table, where we correlate the
ProductID value from the left table. It looks like this:

SELECT P.*
FROM Products as P
CROSS APPLY
(

 SELECT OrderID, OrderDate
 FROM Orders
 WHERE ProdID = P.ProductID
) AS <cross apply alias name>

The WHERE clause in this inner query is where we see the correlation happening.

Then we'll outline an alias for our CROSS APPLY operator:

Page 269

Chapter 12- Advanced Querying Tools

SELECT P.*
FROM Products as P
CROSS APPLY
(
 SELECT OrderID, OrderDate
 FROM Orders
 WHERE ProdID = P.ProductID

) AS RS

I chose to call it "RS" for "Right Side".

Finally in the outer SELECT statement, we can simply outline all columns from this derived CROSS APPLY
table expression:

SELECT P.*, RS.*
FROM Products as P
CROSS APPLY
(
 SELECT OrderID, OrderDate
 FROM Orders
 WHERE ProdID = P.ProductID
) AS RS
ORDER BY P.ProductID

(I also put a simple ORDER BY clause to present the information in order by Product ID).

Again, here's what the final result set looks like:

Page 270

Chapter 12- Advanced Querying Tools

The reason it's called a CROSS APPLY is because for each left input, we basically create a cross product
of all the rows in the right table that correlate to it.

The way I think of a CROSS APPLY is like a JOIN on a query instead of a table. The JOIN operator does
not let you specify a query as the right input. For example, this doesn't work:

Don't get too focused on that error message. SQL Server is simply very confused about what we're trying to
do here.

If we need to use a correlated query as the right input, instead of a table, we should think about using the
CROSS APPLY operator.

OUTER APPLY
What if there were a product that does not have any orders made for it? Let's add a row to the Products
table:

INSERT INTO Products (ProductName, Price)
VALUES ('Display Cabinet', 210.00)

Let's query our Products table to see what the ID is for this new product:

Page 271

Chapter 12- Advanced Querying Tools

Now let's run our CROSS APPLY query again:

Notice we get the same result set as before, and we don't see a row for our new 'Display Cabinet' product.
The CROSS APPLY operator will exclude rows from the left that return an empty result set in the inner
query. Let's plug in the ProductID of our new product to prove that it returns an empty result set in the inner
query:

Since this new product doesn't have any orders made for it, it is excluded from the result set of the CROSS
APPLY query.

But what if we wanted to see this new product in our final result set anyway, despite it not having any
orders? We could use the OUTER APPLY operator instead:

Page 272

Chapter 12- Advanced Querying Tools

OUTER APPLY will include rows from the left side that return an empty result set in the inner query.

Let's delete the new product for cleanup:

DELETE FROM Products WHERE ProductID = 30
DBCC CHECKIDENT('Products', RESEED, 28)

The PIVOT Operator

The PIVOT operator is a tool we can use to group and aggregate data, and present it in a state of columns
instead of a state of rows.

PIVOT is used to present aggregate data in a different way. When it comes to querying data, there are
times when we not only need to make sure the data we've gathered is accurate, but we also might want to
present the data in a format that is easy to understand. The PIVOT operator is used to do just that.

Take a look at the Orders table:

Page 273

Chapter 12- Advanced Querying Tools

Let's actually add one more row for Customer # 50 to this table to discuss later:

We'll start with a simple JOIN query to tell us the customer, product, and sale price of each order:

Page 274

Chapter 12- Advanced Querying Tools

Let's think about some information we might want to gather from this data. What if we wanted to know how
much income we have made per customer, per product.

In other words, for each customer, we want to know how much money they have spent on each of our
products.

We don't have very many customers or products in our database, so let's put together a small grid to help
us gather this data:

CustID Large
Bench Small Bench Coffee Table Side Tables Coat Rack

50

55

60

65

70

75

Page 275

Chapter 12- Advanced Querying Tools

At the intersection of the customer ID and product is where we put how much money we have made from
that customer, for that product.

We'll go down the list of orders and gather our details. We'll start with Customer # 50. The first product they
purchased was the Large Bench:

Cool, so let's fill our grid with the income we have made from that customer for the large bench:

CustID Large
Bench Small Bench Coffee Table Side Tables Coat Rack

50 198.00

55

60

65

70

75

So far, so good. Then we keep going down the list of orders to see what else customer # 50 has purchased.
The next item appears to be the Side Tables:

CustID Large
Bench Small Bench Coffee Table Side Tables Coat Rack

50 198.00 265.20

55

60

65

70

75

Page 276

Chapter 12- Advanced Querying Tools

Alright, let's populate the Side Tables column with this sale price:

We continue down the list of orders. It looks like customer # 50 has one final order, which is another
purchase of the side tables:

Page 277

Chapter 12- Advanced Querying Tools

Okay, so we actually need to update the value in our grid for this customer-product combination. It looks
like we have made a sum of $530.40 from Side Table sales to customer # 50. Let's update the value in our
grid:

CustID Large
Bench Small Bench Coffee Table Side Tables Coat Rack

50 198.00 530.40

55

60

65

70

75

So that's all the orders for customer # 50. That customer hasn't purchased any other products, so there isn't
anything to put at the intersection of that customer and those unpurchased products. We can just put 0.00
for those products:

CustID Large
Bench Small Bench Coffee Table Side Tables Coat Rack

50 198.00 0.00 0.00 530.40 0.00

55

60

65

70

75

Cool, so we've gathered everything for customer # 50.

Folks, we would need to do this work for each customer. We would need to go down the list of orders and
see what products have been purchased for each customer and populate our grid accordingly. This might
be easy enough for a total of 11 orders, but what if there were hundreds or thousands of orders? It would
take a very long time to gather these details.

Using PIVOT, we can write a simple query to present the information in exactly the way we see it in our
grid. Like this:

Page 278

Chapter 12- Advanced Querying Tools

(I'm purposefully not showing you the query that created this awesome result set. We'll figure it out
together).

Writing a PIVOT query
...
...
...

